Aerosol chemical composition and source characterization during 2008 VOCALS REx

-Preliminary Results-

Y.-N. Lee, S. Springston, J. Jayne, J. Wang, J. Hubbe, G. Senum, L. Alexander, L. Kleinman, P. Daum

DOE ASP Science Meeting Santa Fe, New Mexico, February 25-27, 2009 - VOCALS SEP REx: Scientific Program Overview -

Hypothesis 1c: The small effective radii measured from space over the SEP are primarily controlled by anthropogenic, rather than natural, aerosol production, and that entrainment of polluted air from the lower free-troposphere is an important source of cloud condensation nuclei (CCN).

Goal: To identify the sources of these particles by measuring the key tracer constituents

Natural:

- sulfate and methanesulfonate from ocean-emitted DMS
- dust from arid land in the region
- sea-salt

Anthropogenic:

- power plants and smelters
- urban emissions
- Agricultural activities

AMS and PILS-IC were deployed on the DOE G-1 to determine aerosol chemical composition and source identification (PTR-MS was used for determining VOC and DMS)

	MARINE		TERRESTRIAL		
Technique	Sea-Salt	DMS products	Agriculture, Biomass Burning	Urban, Power plants, Smelters	Dust
PILS-IC (0.08 μm – 1.5 μm, bulk; 3.0 min)	<i>Na</i> +, Cl⁻, Mg²+	CH ₃ SO ₃ -, SO ₄ ²⁻	K +, NH ₄ +	NO ₃ -, SO ₄ ² , NH ₄ +	Ca²⁺ , (NaNO ₃)
cToF-AMS (0.06 µm– 0.6 µm, size-resolved; 20 sec)		CH ₃ SO ₃ -, SO ₄ ²⁻	NH ₄ ⁺ , Org	NO ₃ -, SO ₄ ² , NH ₄ +, Org	

Preliminary Data

MBL aerosol chemical composition observed on the flight of 10/28/2008 show:

- SO_4^{2-} dominated, decreasing with distance from land
- NaCl was comparable to SO₄²- away from the coast
- Organics, NO₃-, and NH₄+ were minor, all less than 10% of SO₄²⁻
- $CH_3SO_3^-$ was only occasionally observed, but always below 0.1 μ g/m³
- **K**⁺ and Ca²⁺ were nearly always below 0.15 μg/m³

SO₄²⁻ aerosols were strongly acidic and externally mixed with the modified sea-salt particles

Org, NH₄⁺, and NO₃⁻ were correlated with SO₄²-, suggesting common source attributes and terrestrial origin

The altitude dependent slopes above are consistent with the facts:

- •Sea-salt particles on which NO₃-deposits are externally mixed with SO₄²-aerosols
- •Sea-salt particles have a stronger vertical gradient than SO_4^{2-} particles

Aerosol properties inferred from comparing mass concentrations with DMA and PCASP volumes

- Tight correlation below suggests the D_{p} of nss-aerosol particles were smaller than ${\sim}0.45~\mu m.$
- The near unity slop indicates DMA volume included the water present in SA aerosols (cf. DMA RH = ~13-16% at which the corresponding H₂SO₄ growth factor is ~1.2).
- A strong correlation between mass concentration and PCASP volume, especially for sea-salt containing particles, gives no indication of missing mass due to dust particles (for $D_p < \sim 1.5 \mu m$).

Tentative Conclusions

- MBL aerosol was dominated by sulfuric acid (SA) and sea-salt (SS) aerosol particles, which were found externally mixed.
- SA aerosols are anthropogenic because of
 - a land-water concentration gradient
 - good correlation with organics and NO₃⁻
 - limited contributions from DMS based on low concentrations of CH₃SO₃⁻ and DMS
- SA aerosol sizes are small with D_p < ~0.5 μm
- SS particles were acidified by HNO₃ as well as H₂SO₄ showing Cl⁻ deficits.
- No indication of appreciable dust particles with $D_p < 1.5 \mu m$.

NOT so tentative:

- Knowledge of aerosol chemical composition is needed for understanding:
 - CCN properties
 - Aerosol direct radiative effects
 Both of which require good size information which in turn depends on chemical information
 - Aerosol-cloud interactions
 - Chemical transport and source attributions